Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2297231

ABSTRACT

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Humans , COVID-19/diagnosis , Cell-Free Nucleic Acids/genetics
2.
JAMA Netw Open ; 6(4): e239612, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2296319

ABSTRACT

Importance: Myopia is a global concern, but effective prevention measures remain limited. Premyopia is a refractive state in which children are at higher risk of myopia, meriting preventive interventions. Objective: To assess the efficacy and safety of a repeated low-level red-light (RLRL) intervention in preventing incident myopia among children with premyopia. Design, Setting, and Participants: This was a 12-month, parallel-group, school-based randomized clinical trial conducted in 10 primary schools in Shanghai, China. A total of 139 children with premyopia (defined as cycloplegic spherical equivalence refraction [SER] of -0.50 to 0.50 diopter [D] in the more myopic eye and having at least 1 parent with SER ≤-3.00 D) in grades 1 to 4 were enrolled between April 1, 2021, and June 30, 2021; the trial was completed August 31, 2022. Interventions: Children were randomly assigned to 2 groups after grade stratification. Children in the intervention group received RLRL therapy twice per day, 5 days per week, with each session lasting 3 minutes. The intervention was conducted at school during semesters and at home during winter and summer vacations. Children in the control group continued usual activities. Main Outcomes and Measures: The primary outcome was the 12-month incidence rate of myopia (defined as SER ≤-0.50 D). Secondary outcomes included the changes in SER, axial length, vision function, and optical coherence tomography scan results over 12 months. Data from the more myopic eyes were analyzed. Outcomes were analyzed by means of an intention-to-treat method and per-protocol method. The intention-to-treat analysis included participants in both groups at baseline, while the per-protocol analysis included participants in the control group and those in the intervention group who were able to continue the intervention without interruption by the COVID-19 pandemic. Results: There were 139 children (mean [SD] age, 8.3 [1.1] years; 71 boys [51.1%]) in the intervention group and 139 children (mean [SD] age, 8.3 [1.1] years; 68 boys [48.9%]) in the control group. The 12-month incidence of myopia was 40.8% (49 of 120) in the intervention group and 61.3% (68 of 111) in the control group, a relative 33.4% reduction in incidence. For children in the intervention group who did not have treatment interruption secondary to the COVID-19 pandemic, the incidence was 28.1% (9 of 32), a relative 54.1% reduction in incidence. The RLRL intervention significantly reduced the myopic shifts in terms of axial length and SER compared with the control group (mean [SD] axial length, 0.30 [0.27] mm vs 0.47 [0.25] mm; difference, 0.17 mm [95% CI, 0.11-0.23 mm]; mean [SD] SER, -0.35 [0.54] D vs -0.76 [0.60] D; difference, -0.41 D [95% CI, -0.56 to -0.26 D]). No visual acuity or structural damage was noted on optical coherence tomography scans in the intervention group. Conclusions and Relevance: In this randomized clinical trial, RLRL therapy was a novel and effective intervention for myopia prevention, with good user acceptability and up to 54.1% reduction in incident myopia within 12 months among children with premyopia. Trial Registration: ClinicalTrials.gov Identifier: NCT04825769.


Subject(s)
COVID-19 , Myopia , Male , Humans , Child , Pandemics , China/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Myopia/epidemiology , Myopia/prevention & control , Refraction, Ocular
3.
Int J Chron Obstruct Pulmon Dis ; 18: 349-364, 2023.
Article in English | MEDLINE | ID: covidwho-2287062

ABSTRACT

Objective: To evaluate the real-world situation for the management of chronic obstructive pulmonary disease (COPD) and poorly controlled disease risk factors in the Chinese community. Methods: This retrospective multicentre study analysed data from COPDMICand MICHC in Shanghai Songjiang District, Shanghai, China. The differences in COPD Assessment Test (CAT), the modified Medical Research Council (mMRC) dyspnea scale, and the number of emergency cases, emergency visits, inpatient cases, and hospitalisations from January 2018 to December 2020 were analysed. The impact of coronavirus disease 2019 (COVID-19) on COPD management was also assessed. Results: For 2020 versus 2018, analysis of 468 COPD cases from COPDMIC matched with MICHC data showed significantly more patients with improved mMRC grades, significantly fewer emergency cases and emergency visits, and significantly fewer hospitalisation cases and hospitalisations. Differences in the number of emergency visits and hospitalisations per capita were statistically significant. Compared to GOLD 3-4, GOLD 1-2 patients showed significant improvements in CAT score, mMRC grade, the number of emergency visits and hospitalisations per capita. Treatment adherence from 2018 to 2020 was 25%, 29.1%, and 6.8%, and the proportion of medication regimens consistent with guidelines was 43.44%, 50.98%, and 71.87%, respectively. Higher treatment adherence resulted in significantly improved CAT scores and mMRC grades and fewer emergency department visits and hospitalisations per capita. Conclusion: Combined with remote management tools, patients with COPD achieved continuous improvement in symptoms and exacerbations over 3 years. In the context of COVID-19 prevention/control measures, improvements were significant for patients with GOLD 1-2 COPD but limited with GOLD 3-4. Pharmacologic treatment significantly improved clinical symptoms and reduced emergency visits and hospitalisations. Severe airflow limitation and poor adherence to pharmacologic treatment were important risk factors for lack of disease remission.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/therapy , Pandemics , China/epidemiology , Severity of Illness Index , COVID-19/epidemiology , COVID-19/therapy , Community Health Services
4.
Innovation (Camb) ; 4(1): 100359, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2184481

ABSTRACT

The BBIBP-CorV severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivated vaccine has been authorized for emergency use and widely distributed. We used single-cell transcriptome sequencing to characterize the dynamics of immune responses to the BBIBP-CorV inactivated vaccine. In addition to the expected induction of humoral immunity, we found that the inactivated vaccine induced multiple, comprehensive immune responses, including significantly increased proportions of CD16+ monocytes and activation of monocyte antigen presentation pathways; T cell activation pathway upregulation in CD8+ T cells, along with increased activation of CD4+ T cells; significant enhancement of cell-cell communications between innate and adaptive immunity; and the induction of regulatory CD4+ T cells and co-inhibitory interactions to maintain immune homeostasis after vaccination. Additionally, comparative analysis revealed higher neutralizing antibody levels, distinct expansion of naive T cells, a shared increased proportion of regulatory CD4+ T cells, and upregulated expression of functional genes in booster dose recipients with a longer interval after the second vaccination. Our research will support a comprehensive understanding of the systemic immune responses elicited by the BBIBP-CorV inactivated vaccine, which will facilitate the formulation of better vaccination strategies and the design of new vaccines.

5.
MRS Commun ; 11(4): 425-431, 2021.
Article in English | MEDLINE | ID: covidwho-1686192

ABSTRACT

ABSTRACT: Toll-like receptor (TLR) can trigger an immune response against virus including SARS-CoV-2. TLR expression/distribution is varying in mesenchymal stromal cells (MSCs) depending on their culture environments. Here, to explore the effect of periodic thermomechanical cues on TLRs, thermally controlled shape-memory polymer sheets with programmable actuation capacity were created. The proportion of MSCs expressing SARS-CoV-2-associated TLRs was increased upon stimulation. The TLR4/7 colocalization was promoted and retained in the endoplasmic reticula. The TLR redistribution was driven by myosin-mediated F-actin assembly. These results highlight the potential of boosting the immunity for combating COVID-19 via thermomechanical preconditioning of MSCs. GRAPHIC ABSTRACT: Periodic thermal and synchronous mechanical stimuli provided by polymer sheet actuators selectively promoted the expression of SARS-CoV-2-associated TLRs 4 and 7 in adipose-derived MSCs and recruited TLR4 to Endoplasmic reticulum region where TLR7 was located via controlling myosin-mediated F-actin cytoskeleton assembly.

6.
Genome Res ; 32(2): 228-241, 2022 02.
Article in English | MEDLINE | ID: covidwho-1642462

ABSTRACT

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , RNA/blood , COVID-19/blood , COVID-19/genetics , Cell-Free Nucleic Acids/blood , Cytokine Release Syndrome , Humans , SARS-CoV-2
7.
Hum Immunol ; 83(2): 119-129, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1499900

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of coronavirus disease 2019 (COVID-19). Great international efforts have been put into the development of prophylactic vaccines and neutralizing antibodies. However, the knowledge about the B cell immune response induced by the SARS-CoV-2 virus is still limited. Here, we report a comprehensive characterization of the dynamics of immunoglobin heavy chain (IGH) repertoire in COVID-19 patients. By using next-generation sequencing technology, we examined the temporal changes in the landscape of the patient's immunological status and found dramatic changes in the IGH within the patient's immune system after the onset of COVID-19 symptoms. Although different patients have distinct immune responses to SARS-CoV-2 infection, by employing clonotype overlap, lineage expansion, and clonotype network analyses, we observed a higher clonotype overlap and substantial lineage expansion of B cell clones 2-3 weeks after the onset of illness, which is of great importance to B-cell immune responses. Meanwhile, for preferences of V gene usage during SARS-CoV-2 infection, IGHV3-74 and IGHV4-34, and IGHV4-39 in COVID-19 patients were more abundant than those of healthy controls. Overall, we present an immunological resource for SARS-CoV-2 that could promote both therapeutic development as well as mechanistic research.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged, 80 and over , Antibodies, Neutralizing/immunology , Female , Humans , Immunoglobulin Heavy Chains/immunology , Male , Middle Aged
8.
iScience ; 24(10): 103186, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1446742

ABSTRACT

The COVID-19 pandemic has caused over 220 million infections and 4.5 million deaths worldwide. Current risk factor cannot fully explain the diversity in disease severity. Here, we present a comprehensive analysis of a broad range of patients' laboratory and clinical assessments to investigate the genetic contributions to COVID-19 severity. By performing GWAS analysis, we discovered several concrete associations for laboratory traits and used Mendelian randomization (MR) analysis to further investigate the causality of traits on disease severity. Two causal traits, WBC counts and cholesterol levels, were identified based on MR study, and their functional genes are located at genes MHC complex and ApoE, respectively. Our gene-based analysis and GSEA revealed four interferon pathways, including type I interferon receptor binding and SARS coronavirus and innate immunity. We hope that our work will contribute to studying the genetic mechanisms of disease and serve as a useful reference for COVID-19 diagnosis and treatment.

10.
J Manuf Syst ; 60: 707-708, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1397503
11.
Sci Rep ; 11(1): 13971, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1301179

ABSTRACT

To unravel the source of SARS-CoV-2 introduction and the pattern of its spreading and evolution in the United Arab Emirates, we conducted meta-transcriptome sequencing of 1067 nasopharyngeal swab samples collected between May 9th and Jun 29th, 2020 during the first peak of the local COVID-19 epidemic. We identified global clade distribution and eleven novel genetic variants that were almost absent in the rest of the world and that defined five subclades specific to the UAE viral population. Cross-settlement human-to-human transmission was related to the local business activity. Perhaps surprisingly, at least 5% of the population were co-infected by SARS-CoV-2 of multiple clades within the same host. We also discovered an enrichment of cytosine-to-uracil mutation among the viral population collected from the nasopharynx, that is different from the adenosine-to-inosine change previously reported in the bronchoalveolar lavage fluid samples and a previously unidentified upregulation of APOBEC4 expression in nasopharynx among infected patients, indicating the innate immune host response mediated by ADAR and APOBEC gene families could be tissue-specific. The genomic epidemiological and molecular biological knowledge reported here provides new insights for the SARS-CoV-2 evolution and transmission and points out future direction on host-pathogen interaction investigation.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Coinfection/epidemiology , Genomics , Immunity, Innate , Mutation , SARS-CoV-2/genetics , Adult , COVID-19/transmission , Cytidine Deaminase/genetics , Female , Gene Expression Profiling , Genome, Viral/genetics , Humans , Male , Middle Aged , Nasopharynx/virology , Organ Specificity , SARS-CoV-2/immunology
12.
Front Genet ; 12: 663098, 2021.
Article in English | MEDLINE | ID: covidwho-1268247

ABSTRACT

Symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death. A deep understanding of the variation of biological characteristics in severe COVID-19 patients is crucial for the detection of individuals at high risk of critical condition for the clinical management of the disease. Herein, by profiling the gene expression spectrum deduced from DNA coverage in regions surrounding transcriptional start site in plasma cell-free DNA (cfDNA) of COVID-19 patients, we deciphered the altered biological processes in the severe cases and demonstrated the feasibility of cfDNA in measuring the COVID-19 progression. The up- and downregulated genes in the plasma of severe patient were found to be closely related to the biological processes and functions affected by COVID-19 progression. More importantly, with the analysis of transcriptome data of blood cells and lung cells from control group and cases with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, we revealed that the upregulated genes were predominantly involved in the viral and antiviral activity in blood cells, reflecting the intense viral replication and the active reaction of immune system in the severe patients. Pathway analysis of downregulated genes in plasma DNA and lung cells also demonstrated the diminished adenosine triphosphate synthesis function in lung cells, which was evidenced to correlate with the severe COVID-19 symptoms, such as a cytokine storm and acute respiratory distress. Overall, this study revealed tissue involvement, provided insights into the mechanism of COVID-19 progression, and highlighted the utility of cfDNA as a noninvasive biomarker for disease severity inspections.

13.
Chinese Journal of Mechanical Engineering = Ji xie gong cheng xue bao ; 34(1), 2021.
Article in English | ProQuest Central | ID: covidwho-1247572

ABSTRACT

COVID-19 pandemic has accelerated the re-shaping of globalized manufacturing industry. Achieving a high level of resilience is thereby a recognized, essential ability of future manufacturing systems with the advances in smart manufacturing and Industry 4.0. In this work, a conceptual framework for resilient manufacturing strategy enabled by Industrial Internet is proposed. It is elaborated as a four-phase, closed-loop process that centered on proactive industry assessment. Key enabling technologies for the proposed framework are outlined in data acquisition and management, big data analysis, intelligent services, and others. Industrial Internet-enabled implementations in China in response to COVID-19 have then been reviewed and discussed from 3Rs’ perspective, i.e. manufacturer capacity Recovery, supply chain Resilience and emergency Response. It is suggested that an industry-specific and comprehensive selection coordinated with the guiding policy and supporting regulations should be performed at the national, at least regional level.

14.
Cell Discov ; 7(1): 23, 2021 Apr 13.
Article in English | MEDLINE | ID: covidwho-1182823

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, the microbial composition of the respiratory tract and other infected tissues as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Between 27 January and 26 February 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients in Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. We identified distinct signatures of microbial dysbiosis among severely ill COVID-19 patients on broad spectrum antimicrobial therapy. Co-detection of other human respiratory viruses (including human alphaherpesvirus 1, rhinovirus B, and human orthopneumovirus) was demonstrated in 30.8% (4/13) of the severely ill patients, but not in any of the mildly affected patients. Notably, the predominant respiratory microbial taxa of severely ill patients were Burkholderia cepacia complex (BCC), Staphylococcus epidermidis, or Mycoplasma spp. (including M. hominis and M. orale). The presence of the former two bacterial taxa was also confirmed by clinical cultures of respiratory specimens (expectorated sputum or nasal secretions) in 23.1% (3/13) of the severe cases. Finally, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes was demonstrated in one severely ill patient, which might accelerate his disease deterioration and death occurring one month after ICU admission. Our findings point to SARS-CoV-2-related microbial dysbiosis and various antibiotic-resistant respiratory microbes/pathogens in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking strategies are needed to prevent the spread of antimicrobial resistance, improve the treatment regimen and clinical outcomes of hospitalized, severely ill COVID-19 patients.

15.
Front Med (Lausanne) ; 8: 585358, 2021.
Article in English | MEDLINE | ID: covidwho-1116697

ABSTRACT

The emergence of the novel human coronavirus, SARS-CoV-2, causes a global COVID-19 (coronavirus disease 2019) pandemic. Here, we have characterized and compared viral populations of SARS-CoV-2 among COVID-19 patients within and across households. Our work showed an active viral replication activity in the human respiratory tract and the co-existence of genetically distinct viruses within the same host. The inter-host comparison among viral populations further revealed a narrow transmission bottleneck between patients from the same households, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions.

16.
Genome Med ; 13(1): 30, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1097198

ABSTRACT

BACKGROUND: Since early February 2021, the causative agent of COVID-19, SARS-CoV-2, has infected over 104 million people with more than 2 million deaths according to official reports. The key to understanding the biology and virus-host interactions of SARS-CoV-2 requires the knowledge of mutation and evolution of this virus at both inter- and intra-host levels. However, despite quite a few polymorphic sites identified among SARS-CoV-2 populations, intra-host variant spectra and their evolutionary dynamics remain mostly unknown. METHODS: Using high-throughput sequencing of metatranscriptomic and hybrid captured libraries, we characterized consensus genomes and intra-host single nucleotide variations (iSNVs) of serial samples collected from eight patients with COVID-19. The distribution of iSNVs along the SARS-CoV-2 genome was analyzed and co-occurring iSNVs among COVID-19 patients were identified. We also compared the evolutionary dynamics of SARS-CoV-2 population in the respiratory tract (RT) and gastrointestinal tract (GIT). RESULTS: The 32 consensus genomes revealed the co-existence of different genotypes within the same patient. We further identified 40 intra-host single nucleotide variants (iSNVs). Most (30/40) iSNVs presented in a single patient, while ten iSNVs were found in at least two patients or identical to consensus variants. Comparing allele frequencies of the iSNVs revealed a clear genetic differentiation between intra-host populations from the respiratory tract (RT) and gastrointestinal tract (GIT), mostly driven by bottleneck events during intra-host migrations. Compared to RT populations, the GIT populations showed a better maintenance and rapid development of viral genetic diversity following the suspected intra-host bottlenecks. CONCLUSIONS: Our findings here illustrate the intra-host bottlenecks and evolutionary dynamics of SARS-CoV-2 in different anatomic sites and may provide new insights to understand the virus-host interactions of coronaviruses and other RNA viruses.


Subject(s)
COVID-19/prevention & control , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , COVID-19/virology , Gene Frequency , Genotype , Haplotypes , Host-Pathogen Interactions , Humans , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/physiology
17.
Sci Bull (Beijing) ; 66(12): 1194-1204, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1036222

ABSTRACT

A key to tackling the coronavirus disease 2019 (COVID-19) pandemic is to understand how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manages to outsmart host antiviral defense mechanisms. Stress granules (SGs), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. Here, we show that the SARS-CoV-2 nucleocapsid (N) protein, an RNA binding protein essential for viral production, interacted with Ras-GTPase-activating protein SH3-domain-binding protein (G3BP) and disrupted SG assembly, both of which require intrinsically disordered region1 (IDR1) in N protein. The N protein partitioned into SGs through liquid-liquid phase separation with G3BP, and blocked the interaction of G3BP1 with other SG-related proteins. Moreover, the N protein domains important for phase separation with G3BP and SG disassembly were required for SARS-CoV-2 viral production. We propose that N protein-mediated SG disassembly is crucial for SARS-CoV-2 production.

18.
Cell Discov ; 6(1): 83, 2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-922257

ABSTRACT

The COVID-19 pandemic has accounted for millions of infections and hundreds of thousand deaths worldwide in a short-time period. The patients demonstrate a great diversity in clinical and laboratory manifestations and disease severity. Nonetheless, little is known about the host genetic contribution to the observed interindividual phenotypic variability. Here, we report the first host genetic study in the Chinese population by deeply sequencing and analyzing 332 COVID-19 patients categorized by varying levels of severity from the Shenzhen Third People's Hospital. Upon a total of 22.2 million genetic variants, we conducted both single-variant and gene-based association tests among five severity groups including asymptomatic, mild, moderate, severe, and critical ill patients after the correction of potential confounding factors. Pedigree analysis suggested a potential monogenic effect of loss of function variants in GOLGA3 and DPP7 for critically ill and asymptomatic disease demonstration. Genome-wide association study suggests the most significant gene locus associated with severity were located in TMEM189-UBE2V1 that involved in the IL-1 signaling pathway. The p.Val197Met missense variant that affects the stability of the TMPRSS2 protein displays a decreasing allele frequency among the severe patients compared to the mild and the general population. We identified that the HLA-A*11:01, B*51:01, and C*14:02 alleles significantly predispose the worst outcome of the patients. This initial genomic study of Chinese patients provides genetic insights into the phenotypic difference among the COVID-19 patient groups and highlighted genes and variants that may help guide targeted efforts in containing the outbreak. Limitations and advantages of the study were also reviewed to guide future international efforts on elucidating the genetic architecture of host-pathogen interaction for COVID-19 and other infectious and complex diseases.

20.
Genome Med ; 12(1): 57, 2020 06 30.
Article in English | MEDLINE | ID: covidwho-618232

ABSTRACT

BACKGROUND: COVID-19 (coronavirus disease 2019) has caused a major epidemic worldwide; however, much is yet to be known about the epidemiology and evolution of the virus partly due to the scarcity of full-length SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) genomes reported. One reason is that the challenges underneath sequencing SARS-CoV-2 directly from clinical samples have not been completely tackled, i.e., sequencing samples with low viral load often results in insufficient viral reads for analyses. METHODS: We applied a novel multiplex PCR amplicon (amplicon)-based and hybrid capture (capture)-based sequencing, as well as ultra-high-throughput metatranscriptomic (meta) sequencing in retrieving complete genomes, inter-individual and intra-individual variations of SARS-CoV-2 from serials dilutions of a cultured isolate, and eight clinical samples covering a range of sample types and viral loads. We also examined and compared the sensitivity, accuracy, and other characteristics of these approaches in a comprehensive manner. RESULTS: We demonstrated that both amplicon and capture methods efficiently enriched SARS-CoV-2 content from clinical samples, while the enrichment efficiency of amplicon outran that of capture in more challenging samples. We found that capture was not as accurate as meta and amplicon in identifying between-sample variations, whereas amplicon method was not as accurate as the other two in investigating within-sample variations, suggesting amplicon sequencing was not suitable for studying virus-host interactions and viral transmission that heavily rely on intra-host dynamics. We illustrated that meta uncovered rich genetic information in the clinical samples besides SARS-CoV-2, providing references for clinical diagnostics and therapeutics. Taken all factors above and cost-effectiveness into consideration, we proposed guidance for how to choose sequencing strategy for SARS-CoV-2 under different situations. CONCLUSIONS: This is, to the best of our knowledge, the first work systematically investigating inter- and intra-individual variations of SARS-CoV-2 using amplicon- and capture-based whole-genome sequencing, as well as the first comparative study among multiple approaches. Our work offers practical solutions for genome sequencing and analyses of SARS-CoV-2 and other emerging viruses.


Subject(s)
Betacoronavirus/genetics , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing/methods , COVID-19 , Coronavirus Infections , Genetic Variation/genetics , Host-Pathogen Interactions/genetics , Humans , Multiplex Polymerase Chain Reaction/methods , Pandemics , Pneumonia, Viral , RNA, Viral/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL